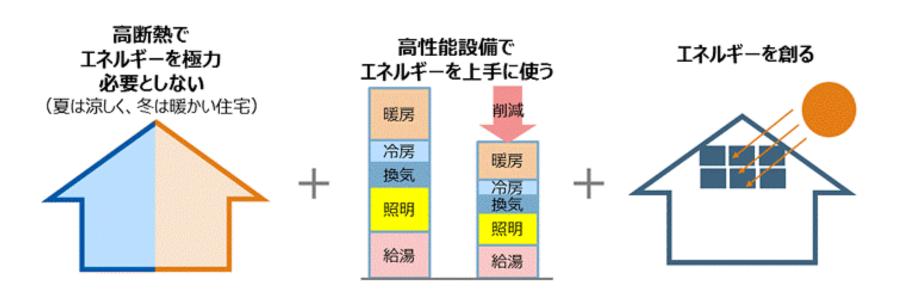
2022年2月1日 令和3年度 北方型住宅技術講習会(オンライン)

住宅の脱炭素化について

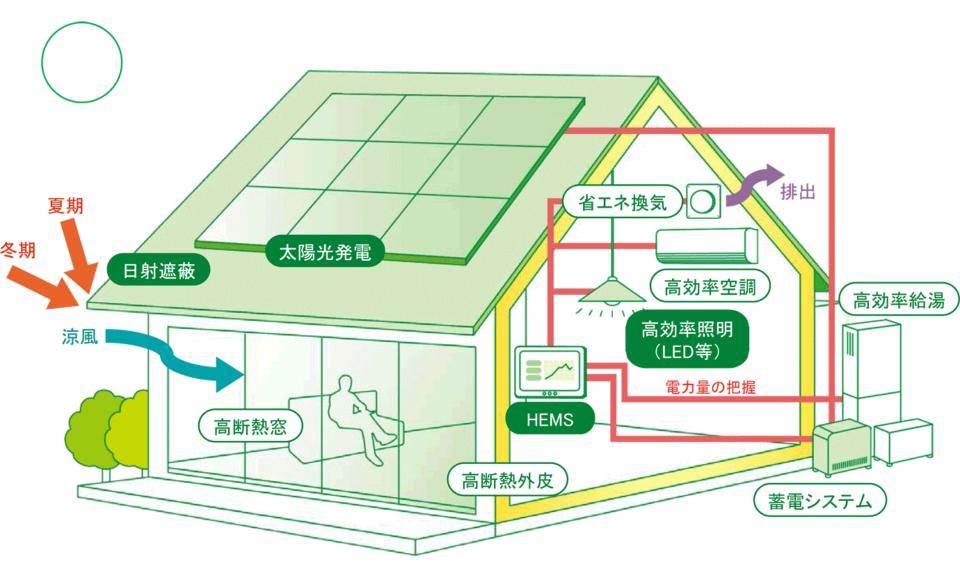
-北方型住宅とZEH-

地方独立行政法人 北海道立総合研究機構 建築研究本部 北方建築総合研究所 建築研究部環境システムグループ 研究主任 阿部 佑平

本日の内容


1. ZEHとは?

- 2. 『ZEH』達成に必要な条件
- 3. 北海道におけるZEHの実態と今後


ZEH(ネット・ゼロ・エネルギー・ハウス)とは

ZEH(ネット・ゼロ・エネルギー・ハウス)とは、

「外皮の断熱性能等を大幅に向上させるとともに、高効率な設備システムの 導入により、室内環境の質を維持しつつ大幅な省エネルギーを実現した上で、 再生可能エネルギー等を導入することにより、<u>年間の一次エネルギー消費量</u> の収支がゼロとすることを目指した住宅」です。

出典:経済産業省資源エネルギー庁HP

ZEHの定義

	定義		
『ZEH』	外皮の高断熱化及び高効率な省エネルギー設備を備		
	え、再生可能エネルギー等により 年間の一次エネル		
	ギー消費量が正味ゼロまたはマイナスの住宅		
Nearly ZEH	『ZEH』を見据えた先進住宅として、外皮の高断		
	熱化及び高効率な省エネルギー設備を備え、再生可		
	能エネルギー等により 年間の一次エネルギー消費量		
	をゼロに近づけた住宅		
ZEH Oriented	『ZEH』を指向した先進的な住宅として、 外皮の		
	高断熱化及び高効率な省エネルギー設備を備えた住		
	宅(都市部狭小地に建築された住宅に限る)		

ZEHの判断基準

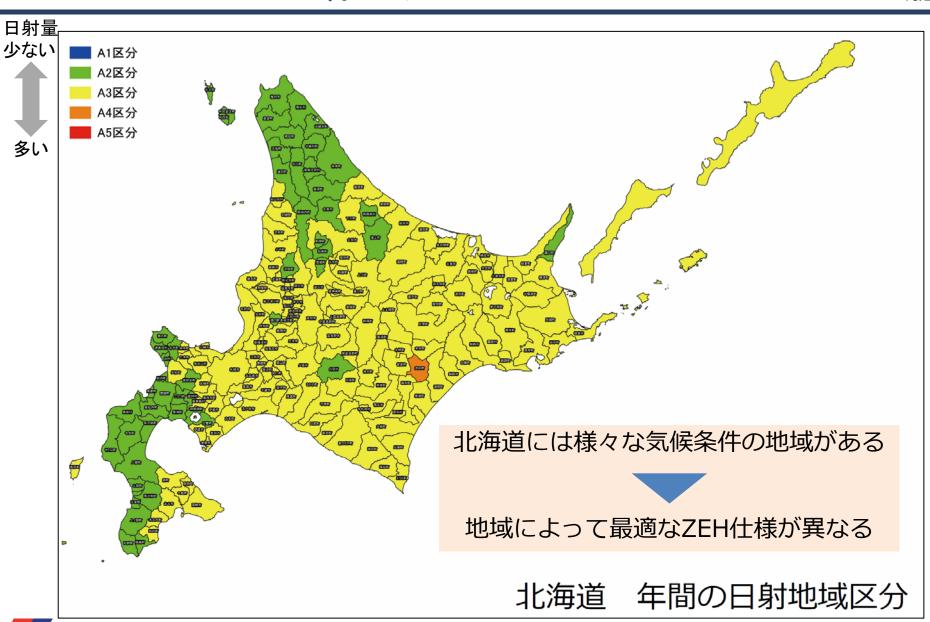
	[ZEH]	Nearly ZEH	ZEH Oriented			
1	U _A 値 1・2地域: 0.40以下 、3地域: 0.50以下					
2	再生可能エネルギー等を除き、基準一次エネルギー消費量から					
	20%以上の一次エネルギー消費量削減					
3	再生可能エネルギーを導入(容量不問)					
4	再生可能エネルギー	生可能エネルギー 再生可能エネルギー				
	等を加えて、基準一	等を加えて、基準一				
	次エネルギー消費量	次エネルギー消費量				
	から 100%以上の 一	から75%以上100%				
	次エネルギー消費量	未満の一次エネル				
	削減	ギー消費量削減				

※一次エネルギー消費量の対象は**暖冷房、換気、給湯、照明**で、その他の家電などは含まれない。

ZEH基準と各種基準・水準の比較

	地域区分			
基準・水準	1・2地域		3地域	
	U _A 値	BEI	U _A 値	BEI
省エネ基準	0.46	1.0	0.56	1.0
北方型住宅	0.46	1.0	0.46	1.0
ZEH基準	0.40	0.8	0.50	0.8
北方型住宅ECO	0.38	1.0	0.38	1.0
北方型住宅2020	0.34	0.8	0.34	0.8
HEAT20 G1	0.34	_	0.38	_
HEAT20 G2	0.28	_	0.28	_
HEAT20 G3	0.20	_	0.20	

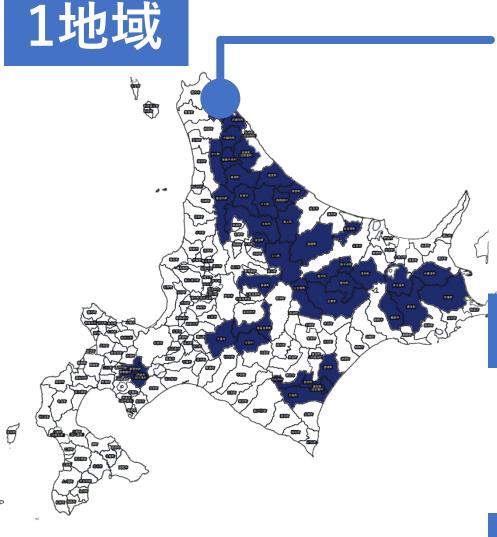
※BEI:設計一次エネルギー消費量を基準一次エネルギー消費量で除した値


本日の内容

- 1. ZEHとは?
- 2. 『ZEH』達成に必要な条件
- 3. 北海道におけるZEHの実態と今後

地域の区分

年間の日射地域区分


●計算条件の概要

- (1) 住宅プラン
 - ・ 二階建て:外皮面積 338.07㎡、延床面積 136.08㎡
 (主たる居室 57.51㎡、その他の居室 42.93㎡、非居室 35.64㎡)
 - ・ 平屋建て:外皮面積 315.50㎡、延床面積 91.09㎡
 (主たる居室 31.67㎡、その他の居室 30.85㎡、非居室 28.57㎡)
- (2) 外皮性能 : U_A値 0.34、0.28、0.20
- (3) 換 気 : ダクト式第3種(高効率)、ダクト式第1種(高効率)
- (4) 暖房・給湯:電気(エアコン・電気ヒートポンプ給湯機)

灯油(灯油FF暖房機・灯油潜熱回収型給湯機)

ガス(ガス潜熱回収型(給湯・温水暖房一体型))

- (5) 照 明 : LED
- (6) 太陽光発電:結晶シリコン太陽電池、屋根置き型、南向き、傾斜角30°
 - ※計算では、エネルギー消費性能計算プログラム住宅版を使用

猿払村(A2区分)

暖房:灯油FF暖房機

給湯:灯油潜熱回収型給湯機

 $U_{A} = 0.34$

外壁:GW150mm相当

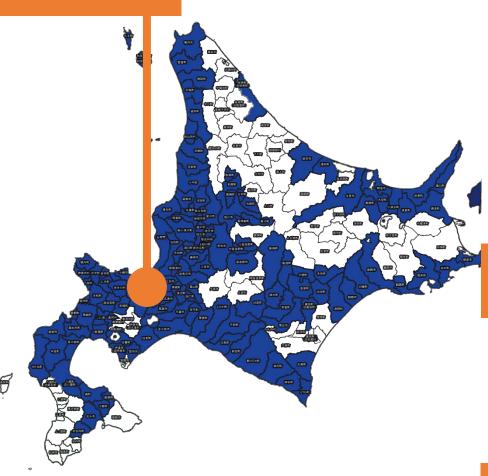
天井:GWブローイング400mm相当窓:Low-eペアガラス(ガス入)相当

太陽光発電:二階建て8.0~9.0kW

平屋建て 6.2~6.9kW

 $U_{A} = 0.20$

外壁:GW300mm相当


天井:GWブローイング500mm相当

窓:ダブルLow-eトリプルガラス(ガス入)相当

太陽光発電:二階建て 7.0~8.0kW

平屋建て 5.3~5.9 kW

2地域

札幌市(A3区分)

暖房:ガス潜熱回収型 給湯:ガス潜熱回収型

 $U_{A} = 0.34$

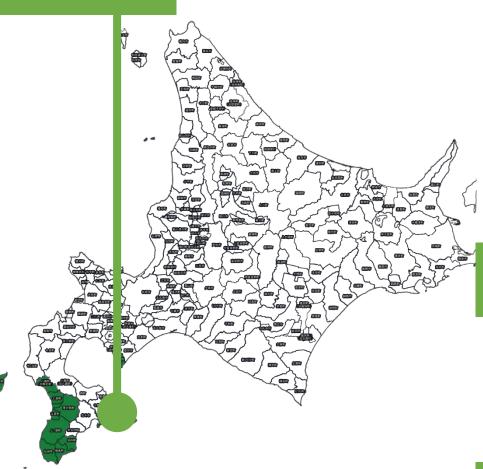
外壁:GW150mm相当

天井:GWブローイング400mm相当窓:Low-eペアガラス(ガス入)相当

太陽光発電:二階建て 7.7~9.1kW

平屋建て 6.7~7.6 kW

 $U_{A} = 0.20$


外壁:GW300mm相当

天井: GWブローイング500mm相当窓: ダブルLow-eトリプルガラス(ガス入)相当

太陽光発電:二階建て 6.4~7.6kW

平屋建て 5.4~6.2 kW

3地域

函館市(A3区分)

暖房:エアコン

給湯:電気ヒートポンプ給湯機

 $U_{A} = 0.34$

外壁:GW150mm相当

天井:GWブローイング400mm相当窓:Low-eペアガラス(ガス入)相当

太陽光発電:二階建て 5.7~6.1kW

平屋建て 4.6~4.7 kW

 $U_{A} = 0.20$

外壁:GW300mm相当

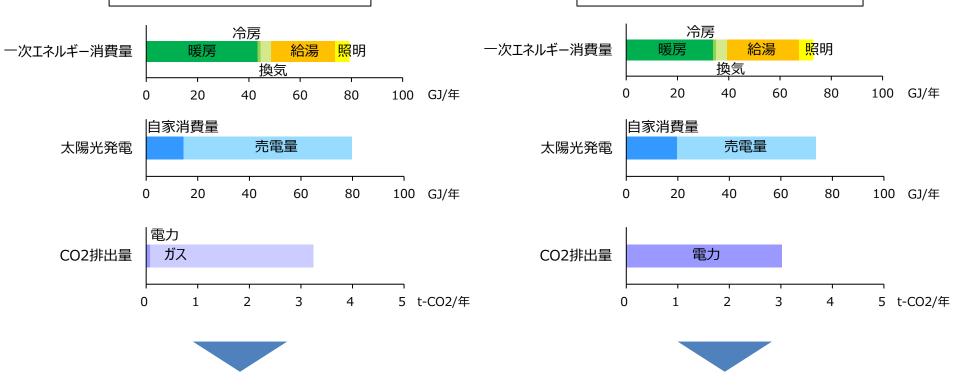
天井:GWブローイング500mm相当 窓:ダブルLow-eトリプルガラス(ガス入)相当

太陽光発電:二階建て 5.3~5.6kW

平屋建て 4.1~4.3 kW

暖房・給湯設備の影響

【計算条件】 住宅プラン:二階建て、地域区分:2地域、日射区分:A3区分


U_A値:0.34、換気:ダクト式第1種、照明:LED

暖房:ガス潜熱回収型

給湯:ガス潜熱回収型

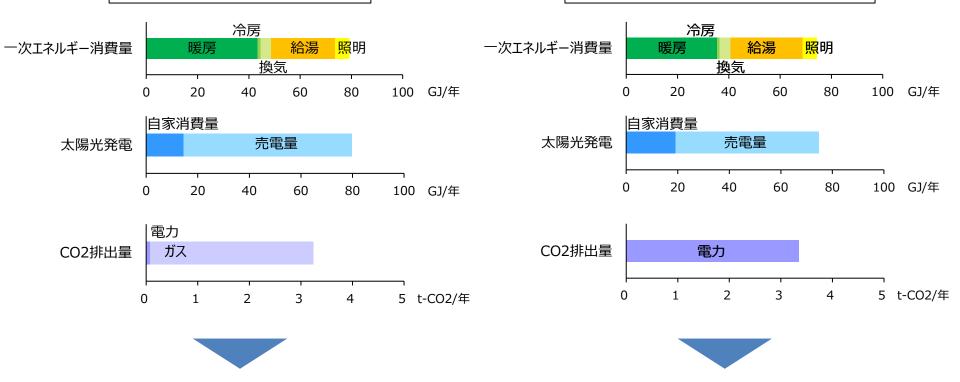
暖房:エアコン

給湯:電気ヒートポンプ

『ZEH』達成に必要なPV容量 7.8kW

『ZEH』達成に必要なPV容量 7.2kW

暖房・給湯設備の影響


【計算条件】 住宅プラン:二階建て、地域区分:2地域、日射区分:A3区分

U_A値:0.34、換気:ダクト式第1種、照明:LED

暖房:ガス潜熱回収型

給湯:ガス潜熱回収型

暖房:地中熱ヒートポンプ 給湯:電気ヒートポンプ

『ZEH』達成に必要なPV容量 7.8kW

『ZEH』達成に必要なPV容量 7.3kW

本日の内容

- 1. ZEHとは?
- 2. 『ZEH』達成に必要な条件
- 3. 北海道におけるZEHの実態と今後

道内におけるZEHの取り組み状況の把握

●ヒアリング概要

対象:これまでに道内でZEHの建設実績がある事業者15社

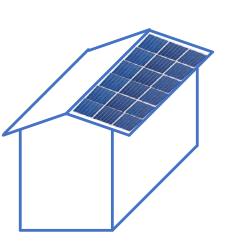
(道内に本社あり14社、道外に本社あり1社)

項目: (1) ZEH住宅の外皮・設備仕様

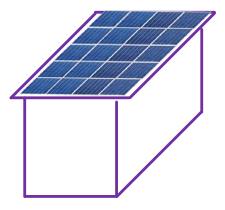
- (2)標準仕様住宅の外皮・設備仕様
- (3)標準仕様とZEHを比較した場合のコスト増
- (4) ZEHにおける課題について
 - ・設計、営業、普及に関すること

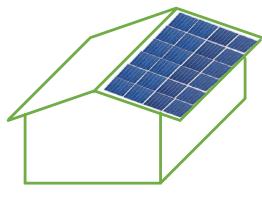
※ヒアリングは今年度実施

ZEHの取り組 み状況、課題 を把握


道内におけるZEHの取り組み状況の把握

●ヒアリング結果


- 建設されているZEHのグレードは『ZEH』、Nearly ZEH、ZEH Orientedまで事業者により様々
- 中小規模の工務店によるZEH建設
 - ▶ 躯体の高断熱化を徹底(U_A値0.2程度)
 - ➤ 太陽光発電は自社施工、パネルも自社で大量購入しコストを 抑えて『ZEH』を建設
- 大手ハウスメーカー(一部を除く)によるZEH建設
 - ➤ ZEH OrientedまでをZEHとして扱い、実態としてはOriented の建設が支配的
- 『ZEH』の太陽光発電容量は、施主側の収支条件や冗長性などの 理由から10kW以上がほとんど
- 太陽光発電は**片流れ屋根**に設置しているケースがほとんどであり、 壁面設置は少ない
- 地域的には、1地域で商業的に『ZEH』を建築しているビルダーは なく、3地域では積極的に取り組んでいる工務店が多い


屋根上に設置可能な太陽光発電容量

二階建て 延床面積 140m² 程度、平屋 90m² 程度で試算

切妻屋根

片側屋根面積 30~40m² 太陽光発電容量 6kW~8kW

片流れ屋根

片側屋根面積 60~80m² 太陽光発電容量 12kW~16kW

フラット屋根

屋根面積 55~75m² 太陽光発電容量 11kW~15kW

平屋切妻屋根

片側屋根面積 40~50m² 太陽光発電容量 8kW~10kW

(※200W/m²の場合)

『ZEH』の運用実態の一例


※HEMSによる測定結果(1件)

自家消費率は、電力消費量が多く発電量が少ない冬期で大きくなる (年間の自家消費率:16%)

※自家消費率:発電量÷自家消費量×100

『ZEH』の運用実態の一例

年間電力量の収支(2021年)

※電力消費量には家電などを含む

- 運用でも『ZEH』を達成 (年間発電量>年間電力消費量)
- 電力消費量に占める自家消費 量の割合が大きくない

蓄電池、ヒートポンプ給湯機の昼間運転、EV等により自家消費を高め、自給率の向上を図る必要がある

壁面太陽光発電の検討

積雪寒冷地域における鋼板一体型壁面太陽電池の有効性 に関する研究(一般共同研究、H24-25) 23/28

モデル実験棟の施工状況

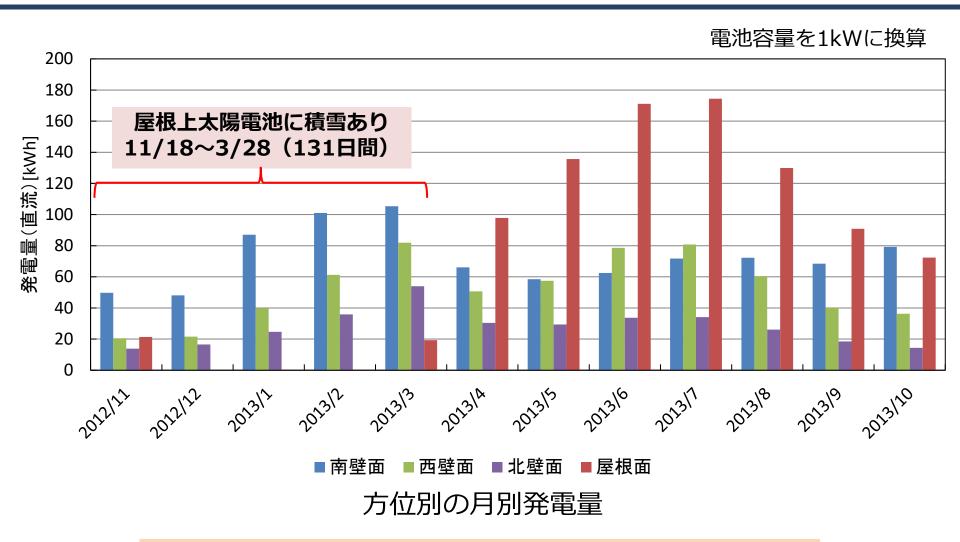
モデル実験棟

• 設置場所:北総研実験街区

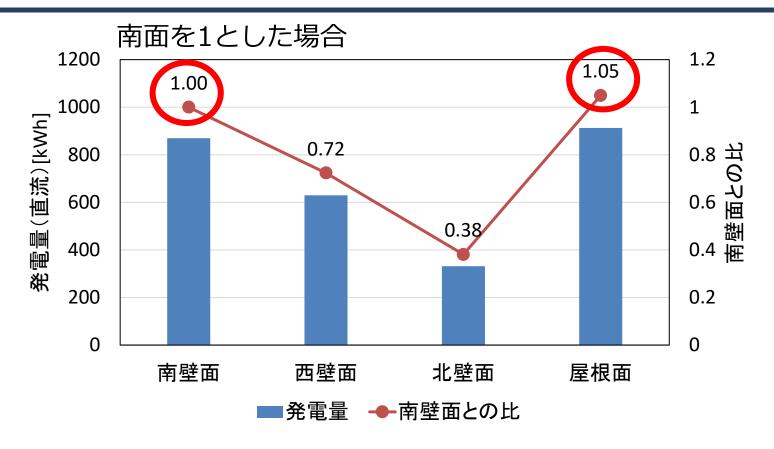
• 棟数 : 2棟

太陽電池容量[kW]

方位	西棟	東棟
南面	0.72	0.72
西面	0.36	
北面	0.18	_
屋根面	0.45	0.45
合計	1.71	1.17



面



月別発電量

• 壁面設置は、年間を通して安定した発電量が得られるが、 屋根面は12月、1月、2月では発電量がゼロであった。

年間発電量

方位別の年間発電量

• 年間発電量は屋根面が最も多く、次いで南壁面であり、**両者の差は5%** であった。これより、<u>南壁面でも屋根面に設置した場合とほぼ同じ発電</u> 量が得られることを把握した。

着雪の状況

2012年12月7日

2013年2月22日

住宅における壁面太陽光発電の可能性

太陽光発電

壁面太陽光発電の設置事例 (旭川市内)

メリット

- ・冬でも発電可能
- ・落雪等の積雪障害を回避
- ・雪面反射による発電量増加

課題

- ・デザイン
- ・設置場所、面積が限られる
- ・周辺建物からの影
- ・光害トラブル

住宅の脱炭素化に向けて、新築戸建住宅で必要な取り組み

- ZEHに取り組んでいくことが必須
 - → ZEHの認知度向上、普及促進
- 太陽光発電を設置することでZEHが達成できる外皮性能を確保
 - → 最低でも北方型住宅2020以上の性能は必須

今後の課題

- ZEHの運用実態の把握(特に、エアコン、ヒートポンプの効率)
- 北海道の地域性を考慮した新たなZEHの検討
- 既存住宅におけるCO₂排出量の削減